Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium.

نویسندگان

  • T C Irving
  • J Konhilas
  • D Perry
  • R Fischetti
  • P P de Tombe
چکیده

The Frank-Starling relationship of the heart has, as its molecular basis, an increase in the activation of myofibrils by calcium as the sarcomere length increases. It has been suggested that this phenomenon may be due to myofilaments moving closer together at longer lengths, thereby enhancing the probability of favorable acto-myosin interaction, resulting in increased calcium sensitivity. Accordingly, we have developed an apparatus so as to obtain accurate measurements of myocardial interfilament spacing (by synchrotron X-ray diffraction) as a function of sarcomere length (by video microscopy) over the working range of the heart, using skinned as well as intact rat trabeculas as model systems. In both these systems, lattice spacing decreased significantly as sarcomere length was increased. Furthermore, lattice spacing in the intact muscle was significantly smaller than that in the skinned muscle at all sarcomere lengths studied. These observations are consistent with the hypothesis that lattice spacing underlies length-dependent activation in the myocardium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium.

Changes in interfilament lattice spacing have been proposed as the mechanism underlying myofilament length-dependent activation. Much of the evidence to support this theory has come from experiments in which high-molecular-weight compounds, such as dextran, were used to osmotically shrink the myofilament lattice. However, whether interfilament spacing directly affects myofilament calcium sensit...

متن کامل

Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing.

The increase in myofilament Ca(2+) responsiveness on an increase in sarcomere length (SL) is, in part, the cellular basis for Frank-Starling's law of the heart. It has been suggested that a decrease in myofilament lattice spacing (LS) in response to an increase in SL underlies this phenomenon. This hypothesis is supported by previous studies in which reduced muscle width induced by osmotic comp...

متن کامل

Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart.

BACKGROUND At the basis of the Frank-Starling mechanism is the intrinsic ability of cardiac muscle to produce active tension in response to stretch. Titin, a giant filamentous molecule involved in passive tension development, is intimately associated with the thick filament in the sarcomere. Titin may therefore contribute to active tension development by modulating the thick filament structure ...

متن کامل

Strong Binding of Myosin Modulates Length-Dependent Ca Activation of Rat Ventricular Myocytes

Reductions in sarcomere length (SL) and concomitant increases in interfilament lattice spacing have been shown to decrease the Ca sensitivity of tension in myocardium. We tested the idea that increased lattice spacing influences the SL dependence of isometric tension by reducing the probability of strong interactions of myosin crossbridges with actin, thereby decreasing cooperative activation o...

متن کامل

Myosin head orientation: a structural determinant for the Frank-Starling relationship.

The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 279 5  شماره 

صفحات  -

تاریخ انتشار 2000